-
焊接用混合氣體種類匯總表
1. Ar+He 用不同Ar、He組合能操控陰極斑駁的方位,提高電弧電壓和熱量,保 持Ar的有利特性。但He的體積分數小于10%時會影響電弧和焊縫的力學性能,與Ar混合的 He的體積分數至少應在20%以上才能發(fā)生和維持安穩(wěn)噴發(fā)電弧的作用。He的參加量視板厚而 定,板越厚參加量越大。 Ar+25%He這種配比很少,僅用于鋁焊接時需要增加熔深和對焊縫 成型要求很高的場合。Ar+75%He廣泛用于厚度25mm以上鋁的平方位自動焊,還可增加 6~12mm厚銅焊件的熱輸入,并減少焊縫的氣孔更多 +
-
細數工業(yè)氣體的5大危險特性!
工業(yè)氣體的危險特性主要有燃燒性、毒害性、窒息性、腐蝕性、爆炸性以及可能發(fā)生氧化、分解、聚合等產生的危險特性。由于工業(yè)氣體用氣瓶屬于移動式壓力容器,流動范圍廣,使用條件復雜,無專人監(jiān)督其日常使用,因此工業(yè)氣體的危險特性導致事故的可能性及危害性會很大,必須引起足夠重視。熟悉掌握工業(yè)氣體的各種危險特性,對于預防事故和減少災害,具有十分重要的作用。 一、燃燒性 可燃氣體的燃燒往往同時伴有發(fā)光、發(fā)熱的激烈反應,對周圍環(huán)境的破壞很大,危險性十分明顯。根據燃燒條件,燃燒必須同時具備可燃物,助燃物和點火源。更多 +
-
氦氣的應用你真的都了解么?
在心臟和神經組織的實驗研究已經表明,氦氣具有和氙氣類似的麻醉性,稀有氣體氦氣也降低缺血-再灌注損傷。盡管氦氣引起的器官保護的不同的機制尚未完全解開,多條信號通路已經確定對心臟和由不同預處理和后處理的協(xié)議主要是獲得大腦的保護作用,氦氣也施加在肺、免疫系統(tǒng)以及血管的效果。 顯然,氦氣作為稀有氣體是不是生化惰性,并發(fā)揮生物學效應,但直到今天這個問題仍然開放如何將這些變化介導的。由于氦氣具有良好的特性和缺乏血流動力學副作用,氦氣是適合危重病人使用的氣體。本文綜述了氦氣對細胞的影響,這可能會導致組織搶救缺血更多 +
-
氮15同位素是古人類食物結構研究中的重要元素
關于氮同位素,是指氮十五的分析與應用。氮十五也是古人類食物結構研究中的重要元素,它所表征的內容與碳十三是互補的,反映人類食物組成中蛋白質的攝入程度。通常食肉較多的人較之僅是依靠植物類生存的人其體內氮十五比值明顯偏高,而食魚較多的人,體內氮十五的比值會更高。一般食物鏈越長,其氮十五比值就越高,它反映了營養(yǎng)級的高低。氮十五分析用于古人類食物結構研究,國外是在上世紀70年代后逐漸開展起來的。由于氮本身的特性,與碳十三相比其分析難度要大得多,因之國內的研究起步較晚。2001年后,考古所碳十四實驗室通過反復實驗與研究,應用元更多 +
-
碳13、碳14同位素對考古研究的重要意義
碳氏家族的兄弟主要有3個,碳十二、碳十三和碳十四。它們在自然界中的豐度分布分別是碳十二約占98.9%,碳十三約占1.1%,碳十四約占10-10%。而恰恰是后兩者豐度較低的碳同位素,成為考古學研究中的“示蹤劑”,受到世人的關注。中科院考古所碳十四實驗室從事的正是通過碳十四、碳十三這樣兩個碳氏家族成員的分析來探討人類的過去。 碳十四又被稱作人類的放射性時鐘。之所以有此,在于它的紀年特性。碳十四是一種放射性同位素,半衰期為5730年。也就是說每過5730年,其數量就衰減一半。它由更多 +
-
穩(wěn)定同位素在藥物研發(fā)過程中的應用
同位素為相同化學元素的原子,由于在原子核中存在不同的中子數而具有不同的質量,有輕、重同位素之分;根據物理特性,又可將同位素分為放射性和穩(wěn)定性兩種形式。放射性同位素(如:3H、14C)經歷著自身的衰變過程,并放射出輻射能,是不穩(wěn)定的,具有物理半衰期;穩(wěn)定性同位素無放射性,物理性質穩(wěn)定,以一定比例(豐度)存在于自然界,對人體無害,可采取化學合成的方法將其標記到藥物分子中去,并通過氣質、液質等儀器對其進行跟蹤檢測。 一、“同位素標記”在藥物研發(fā)過程中的2個主要方向 藥代動力學研更多 +
-
高純氣體管道運輸中管材的影響
在不銹鋼熔煉制材過程中,每噸可吸收大約200g的氣體。不銹鋼材加工完畢,不僅其表面粘有各種污染物,而且在其金屬晶格內也吸留有一定量的氣體。當管路中有氣流通過時,金屬所吸留的這部分氣體會重新進入氣流中,污染純凈氣體。當管內氣流為不連續(xù)流動時,管材對所通過的氣體形成壓力下吸附,氣流停止通過時,管材所吸附的氣體又形成降壓解析,而解析的氣體同樣作為雜質進入管內純凈氣體中。同時,吸附、解析周而復始,使得管材內表面金屬也會產生一定的粉末,這種金屬粉塵粒子同樣污染管內純凈的氣體。管材的這一特性至關重要,為了確保輸更多 +
-
六氟化硫的絕緣效果怎么樣?
在電氣設備中,介質的傳熱特性對設備的運行溫度和效率具有很大的影響。在某些情況下,傳熱能力是選擇某種絕緣介質時考慮的決定因素。作為氣體介質,其傳熱特性主要取決于它的熱導率、比熱容和粘度。六氟化硫良好的傳熱性質決定了它作為絕緣氣體的霸主地位。 經典的熱傳導是考慮氣體的分子熱擴散運動,使高溫區(qū)域的分子攜帶較高的內能,遷移至溫度較低的區(qū)域,造成熱量在空間的傳遞。這里的分子運動指的是熱運動,而不是宏觀的相對移動。只要空間存在著溫差,就存更多 +