-
工業(yè)氧氣和醫(yī)用氧氣有什么區(qū)別
氧氣分為工業(yè)氧氣和醫(yī)用氧氣。差異: 1.氧氣的濃度和質量不同。 工業(yè)氧氣中含有許多雜質,工廠檢驗中沒有對其進行要求。特殊氣體網絡和氧氣濃度99%以上合格。因此,吸入影響人們的健康。醫(yī)用氧氣純度高,氧含量濃度不低于99.5%,無色無味。醫(yī)用氧氣必須檢測雜質,一旦雜質超標,就不能輸送。 2.適用范圍不同。 醫(yī)用氧氣是臨床醫(yī)用氧氣,俗稱干氧,主要用于預防和治療缺氧患者;工業(yè)氧氣實際上是用于工業(yè)生產和產品加工的氧氣。 3.濕度控制不同。 醫(yī)用氧氣需要很低的含水量,因為水會導致鐵氧化,當吸入人體時會造更多 +
-
過度吸氧的負作用有哪些
早在19世紀中葉,英國科學家保羅·伯特就發(fā)現動物在呼吸純氧時會中毒。如果一個人處于大于0.05MPa(半大氣壓)的純氧環(huán)境中,它對所有細胞都有毒。如果吸入時間過長,他可能會患上“氧氣中毒”。肺的毛細血管屏障被破壞,導致肺水腫、肺充血和出血,嚴重損害呼吸功能,繼而造成器官缺氧損傷。在0.1MPa(1-大氣)的純氧環(huán)境中,特殊氣體網絡中的人只能存活24小時,并發(fā)生肺炎,最終導致呼吸衰竭和窒息。人類可以在0.2 MPa(2個大氣壓)的高壓純氧環(huán)境中停留數小時至最多兩小時,更多 +
-
乙烷氣體的毒性及使用安全
乙烷是易燃易爆氣體。其自然溫度、燃燒熱和空氣中的爆炸極限。乙烷的爆炸濃度相對較低,因此無論生產現場、儲存、運輸和使用環(huán)境如何,都應按照相關規(guī)范配置防火防爆設備。所有裝滿乙烷的容器必須按照相關規(guī)定進行稱重和填充。嚴禁過度擁擠。所有燃料氣瓶的閥門接口應不同于惰性氣體的閥門接口,應為帶反螺紋(逆時針)的螺紋接口。 處理可浸泡在低溫泄漏乙烷液體中的多孔材料(如珍珠巖粘合劑、隔熱泡沫等)時應特別小心。必須將其加熱至常溫,并且在起火之前,必須用惰性氣體替換多孔材料中吸收的可燃氣體。 直接接觸液態(tài)乙烷會導致凍更多 +
-
氦氣在地球的哪些地方存在,氦氣是怎樣形成的?
氦是人類已知的第二種輕氣體,僅次于氫。但氦的許多應用,無論是在科學領域還是非科學領域,都是有益和實用的。氦比空氣輕得多,是一種惰性氣體,這意味著它在與空氣和明火接觸時不會燃燒,而與氫接觸時則不會燃燒。 (這對那些想要在生日派對上放氣球的孩子來說不是好消息?。? 除了液氦比空氣輕之外,液氦在科學中的作用也是令人難以置信的。沸點為4開爾文的液氦被用來冷卻地球上一些最強大的電磁鐵,包括費米實驗室和大型強子對撞機(LHC)。它是人類已知的第一種超流體,因為這種液體具有一些有趣的性質,包括完全沒有粘度。一旦你讓更多 +
-
惰性稀有氣體在霓虹燈管內的作用
霓虹燈可分為兩類:填充惰性氣體的燈和填充氬汞氣體并在管內壁涂有熒光粉的燈。放電過程中前者輻射原子的特征光譜;后者通過在放電過程中激發(fā)汞原子產生253.7 nm紫外光子輻射,這些紫外光子刺激熒光粉形成量子轉換并發(fā)光。 僅使用填充惰性氣體的燈型,惰性氣體的主要功能如下: 1.參與原子的受激發(fā)射,例如充滿氖的霓虹燈發(fā)射紅色光譜; 2.有效維持放電過程,防止電子自由程過大,使自由電子在激發(fā)和電離過程發(fā)生之前自然消失; 3.控制電子遷移率,即控制放電管的電導率,以確定氖管中的電場強度,并使氖管的電壓降;更多 +
-
準分子激光材料加工--打孔
在材料加工中,鉆孔是激光在工業(yè)中最早的應用之一。當時使用紅寶石激光器是因為它們具有敏銳的啟動特性。目前,脈沖Nd:YAG激光器主要用于大量鉆井作業(yè)。 作為一種合適的技術,激光鉆孔主要用于鉆取薄膜冷卻孔。它用于鉆削燃氣輪機部件,如葉片、葉片、燃燒室、加力燃燒室和其他部件,如燃油柴油發(fā)動機噴油器和金屬絲擠壓用硬模具。盡管激光鉆孔速度很快,但它仍然必須與電火花加工(EDM)技術競爭,因為旋轉空心電極和直線電機高壓供油技術的發(fā)展大大提高了EDM的鉆孔速度,即從質量角度來看,該加工技術的性能優(yōu)于激光打孔。更多 +
-
氙氣Xe-氪氣-Kr-鹵素氣體--電光源照明混合氣
電光源分類 光源可分為自然光源和人工光源。就人造光源而言,以電的形式發(fā)光的光源統(tǒng)稱為電光源。根據電能轉化為光能的不同形式,電光源可分為以下幾類:氣體放電光源、熱輻射光源、固體光源和激光光源。前三種光源屬于非相干光源,激光光源屬于一種新型相干光源。光源研究是一門特殊的技術學科,包括光學、原子物理、電真空和色度學等多個學科。本工作主要針對氣體放電光源和電光源用混合氣體,其他類型的電光源僅作簡要介紹。 1.1氣體放電光源 氣體放電光源是放置在氣體中的兩個電極之間以發(fā)光的光源。氣體放電光源因其高輸出光而得更多 +